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ABSTRACT

Factors such as demand, deteriorating rate, and so on should be taken into consideration in the
deteriorating inventory study. Among them, demand acts as driving force of the entire inventory system
and the deteriorating rate stands for the characteristics of the deteriorating items. Other factors like price
discount, allow shortage or not, inflation, and the time-value of money are also important in the study of
deteriorating items inventory.
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INTRODUCTION
Inventory cost is an important part of the enterprise operation cost. For deteriorating items, especially
those with high deteriorating rate, deterioration is a key characteristic and its impact on modeling of
inventory systems cannot be neglected. So the deterioration rate should be taken into consideration in the
development of inventory strategy. For different kinds of enterprises, the emphasis on the deteriorating
items inventory study is different. For the seller of deteriorating items, the current studies can be divided
into two types; the first type emphasizes the inventory strategies for the retailer of the deteriorating items,
the second type focuses on the inventory policy under a two-warehouse system. For the manufactures of
deteriorating items, the current emphasis is on developing an optimal production-inventory strategy. So,
this paper has divided the present studies on deteriorating items inventory for a single enterprise into
three categories as stated above. In this paper an attempt has been made to develop an inventory model
for infinite planning horizon with exponentially increasing demand rate. It can be noticed that
deterioration does not depends upon time only. It can affect due to whether conditions, humidity, storage
conditions etc. therefore it is more realistic to consider deterioration rate as two parameter weibul
distribution function. Shortage are allowed and fully backlogged. The holding cost considered a linear
function of time. The optimal solution of t he proposed inventory model is derived and considered same
cases.
ASSUMPTIONS & NOTATIONS
e The replenishment size is constant and production is instantaneous during prescribed time period T of
each cycle.
e Lead time is zero.
e Shortage are permitted and completely accumulated

d
e Demand rate D(t) =—— e g any time t.
(e-1)T
e Deterioration rate 0=t 0<o <1, p=1
e Holding cost C; =h +yt per unit.
e C,, C, arethe cost of each item, shortage cost per unit per unit time respectively.

ANALYSIS FOR THE SYSTEM:
Let I(t) be the current stock level at any time t.
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_dl(t)+e|(t):_—d eT, 0<t<t,
dt (e-1)T
t
iy ___d eT, t, <t<T
dt (e-1)T
By equation (1.1), we have
1
() +aftP-1(t)= —LeT

dt

LE — e[ aptPdt _ eatB
Solution of equation (1.1) is given by

=

t
I(t)eO‘tB =—jﬁeTe‘“ﬁdt +B

where B is the constant of integration.

:_(e dl)T-[e; (1+ octB)dt +B.

t
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After expanding €T by Taylor’s series and neglecting higher order terms of ? greater than 1

('.'%<1j, we get
I(t)eOttﬁ :_(e fil)TI(1+%j(1+ octB)dt+ B

___d j(1+£+0‘tﬁ +gtﬁ+1jdt+ B
-1\ T T

d t*  atPt atht?
=— t+—+ + +B.
(e—l)T 2T pB+1 T(B+2)
At t=0, I(t) =S, then from equation (1.3), we have

2 B+l B+2
I(t)e“‘B:— d {t o o }+S.

+—+
(e—l)T 2T pB+1 T(B+2)
Att=t, I(t) =0, then from equation (84), we have
2 B+1 p+2
S:L t1+t—1+OLt1 L2 .
(e—l)T 2T pB+1 T(B+2)
Substituting the value of S in equation (1.4) from equation (1.5), then
2 p+1 pB+2
I(t)—L t1+t—1+OLtl P S
(e—l)T 2T pB+1 T(B+2)

..(1.3)

..(1.4)

...(1.5)
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—— - (1—oct5). ...(1.6)
2T B+1 T(R+2)

Neglecting higher order terms of o , we get from equation (1.6)

2 2 2:B
03 LI PP WL RO UL L
(e-1)T 2T 2T 2T

Od:ﬁ+2 OLt[13+1 OLtEJrZ ot B+l OLtB+2
+ + - -
2T  p+1 T(@E+2) p+1 T(R+2)
2 B+1 pB+2
I(t)= d t1+t—1+0Ltl L
2T B+1 T(B + 2)

2 2B B+l B+2
—t——octlt’3 _ott aptt | oft (L7)
2T 2T  B+1  2T(B+2)

Solution of equation (1.2) is given by
d 4 t
I(t)=——| eT —eT |. ...(18
() e_l[ ] as
Total amount of deteriorated units
d t
p-s-[" I __eTa
0 (e-1)T

t 4
=S— d {TeT

d b
:S_(e 1)[eT -1 ...(1.9)

Substituting the value of S from equation (1.3) in equation (1.6), we get

2 B+l B+2 b
__4d4 tl+t—1+Octl + ol —TeT +T....(1.10)
(e-1)T| " 2T B+1 T(B+2)

Number of units in shortage

= [t

d b 4
=——| 2TeT —teT —eT|.

e-1
Therefore average shortage cost
C,d i3
:_I_(—Zl){ZTeT —te’l —eT} ..(1.11)
e —

Average holding cost

copyright@ijermt.org Page 50



International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email: editor@ijermt.org January- 2017 Volume 4, Issue 1 Www.ijermt.org

:—I h+ﬁ
:ﬂo hi(t) o|t+?jO Yt (t)dt
~h d J~t1 t12 octB+1 N ath+? Lt

T(e-DT | 2T " ps1 T(p+2) 2T

B B+l p+2
—at,t? - oyt Lot opt dt
2T  B+1 2T(B+2)

t t t t[3+lt B+2
y d J‘01|: 1 Lo N ot; {12

+?(e—l)T T B+1  T(B+2)
3 B+1 p+2 B+3
L S Ll
2T B+l  2T(B+2)
_h d 12+£+0Ltf+2+ off ot
T(e-1)T 2T B+1 T(B+2) 2 6T
OLtE+2 at[lSJrS aBt[l?;+2 aBtiﬂS
— - - +
B+2 2T(B+1) ([3+1)(B+2) 2T(B+2)(B+3)
+L t3 tf OLtB+3 ath+ E
T(e-1)T

+ +
2 4T 2(B+1) 2T(B+2) 3
B i B octB+3 octB+4 aBtf” o Bt[13+4 }

8T PB+2 2T(B+2)+(B+1)(B+3)+2T(B+2)([3+4)
h d F 14 apt apt*?

“TPe-1)2 3T 2T(p+L)(p+2) (p+1)(B+2)

ofti® |,y d |t b apy”
2T(B+2)(B+3) T?e-1/ 6 8T 2(B+1)(B+2)
N aBt1B+3 N aBth }
(B+1)(B+3) 2T(B+2)(B+4)
~hd ﬁ N i N apth*® N apti+?
CT?(e-1)| 2 3T T(B+1)(B+3) (B+1)(B+2)
W (gt oty o Bty
+T2(e—1) {6 Ter " 2([3+2)([3+3)+ 2T(B+2)p +4)
Total average cost per time is given by

}. ..(1.12)

CD
K(Ti) = ? + Average Holding cost + Average Shortage cost
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cD hd [t ¢ apth apt??
= + —+—=+ +
T T(e-1)|2 3T TB+1)(B+3) (B+1)(B+2)

d (8t epf®  apt)”
T?(e-1)| 6 8T 2(B+1)(B+3) 2T(B+1)(B+2)

4 4
+ C2d1 (ZTeT CH —eTj

+L_i+i+ aBtf+3 N aBt[la+2
T?(e-1)| 2 3T T(B+1)(B+3) (B+1)(B+2)

o [E ot o fth*
t— | t=+ +
T?(e-1)| 6 8T 2(B+2)(B+3) 2T(B+2)(B+4)
+—2 2TeT —t,eT —eT ...(1.13)
T(e-1)
The necessary conditions for minimum the total average costs K(tl,T) are
6_K:0 and 6_K:0 ...(1.14)
oT oty
oK ,
Now — =0, gives
oT
4 4
2 B+l p+2 T T
_oC t1+3t1 +oct1 N Bat; = Tel te +I
4T B+1 2T(B+2) 2 2 2

~ ﬁ i apth* 20pth+
3'{3 3T TR0 (p+3) 3(B11)(B+2)
~ Z_tf i aBt[f+3 O('BthA
Y{ o "8T 2(p+2)(p+3) 2T(B+2)(B+4)

4
+C,t%eT =0. ...(1.15)

and 6—K =0, gives
i}

p+1 b
C 1+t—1+octf+&—eT
T T
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+hit, + 2+ P, + P
T B+1 T(B + 1)

L, apt” | apy”
N2 2T 2(p+2) 2T(p+2)

t 4y
+C2(TeT —t?leTJzo. ...(1.16)

Equation (1.15) and (1.16) gives the optimum values of T and t; respectively. Provided

2
2 2 2 2 2
Koo, TKoo | K| K]
oT otf aTe )\ ot oToy
Case I: In case of finite planning horizon, the total average cost is given by
i 2 B+l B+2 Y
K(t))=—F— Cd t1+i+Octl PR SN S ¢
T (e-1) 2T B+1 TP+2)
. hd 2 £ . ot apt+?
T?(e-1)|

2 3T T T(B+1)(p+3) T(B+1)(B+2)

d (8 6 epth® ot

T?(e-1)| 6 8T 2(B+2)(B+3) 2T(B+2)(B+4)
C

+

+

—

(e-1)

Sub case 1: When =1

Sub case 2: When =2

Sub case 3: When =3

Case II: When T = 1, the total average cost is given by

2 p+1 B+2
K(tl):c—d{tl+t—l+OLtl L S +1}
e

d b b
2 2TeT —t,eT —eT ...(1.18)

1| YT 2 T Bl B2
bGPt opd”
e-1|2 3 (B+1)(B+3) (B+1)(B~+2)
+_d E_}_i_l_ aBt[f+3 s OLBt?Hl
e-1|6 8 2(B+2)(B+3) 2(B+2)(B+4)
Cdr, )
+e—i1_2et —t,e' —e] ...(1.19)

Sub case I: When 3 =1, then deterioration rate becomes constant in case of finite planning horizon

2 2 3 H
K(t1)=2L tl+i+oc—t1+oc—tl—TeT +T
T2(e-1)| ' 2T 2 3T
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hd |t t aff ot vd
t—— | Tt =+ + +—
T’(e-1)[ 2 3T 8T 6 | T*(e-1)

3 4 4 5 b b
Lob oh o) cd 2TeT —teT —eT |.
6 8T 24 30T| T(e-1)

...(1.20)
Therefore
dK (t 24
(1): 20d 1+t—1+oct1+&—eT
d, T (e-1)| T T
2 3 2
N 2hd t1+t—1+at1+at1 N 2yd
T (e-1) T 2T 2 T (e-1)
2 3 3 4 b b
Loh o o 2C2d TeT —teT
2 2T 6 6T | T (e—l)
N K (1)
For minimum total average cost ———= =0

1

2 4 2 3 2
= C 1+t—1+atl+ﬁ—eT +h t1+t_1+at1+oct1
T T T 2T 2

2 3 3 4 b b
y b4 o oy +c,| TeT —teT |=0....(1.21)
2 2T 6 6T

Sub case 2. When 3 =2, deterioration rate will become a variable linear function of time, then total
average cost becomes

2 3 4 ty
K(t1)=2C—d t1+i+oc—t1+ﬁ—TeT +T
T2(e-1)| * 2T 3 4T

hd {ﬁ+i+2atf+atf}r vd

+—
T*(e-1)[ 2 3T 15T 6 | T*(e-1)
3 4 5 6 4 4
LU S o 2C2d 2T%T —t,TeT —eT?
6 8T 20 24T | T (e—l)
(1.22)
dK(t
For minimum value of K(t,), d'f 1) =0
1

t, o, atft 2 )
= C{l+=2+atj +——-eT |[+h|t,++—+—
T T T
2 3 4 5 4 4
+y t—1+—t1 +—Octl +—0Lt1 +c,| TeT —teT [=0....(1.23)
2 2T 4 AT
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Sub case 3. When 3 =23, then deterioration rate will become a quadratic function of time. Then total
average cost equation becomes

2 4 5 t
K(t,) _Cd tl+i+&+a—tl—TeT+T
2T 5T

“T?(e-1) 4
2 3 6 5]
N 2hd t_1+t_1+at1 Jr30ct1 N 2yd
T (e—l) 2 3T 8T 20 | T (e—l)
3 .4 6 7 o4 Y
Lo oty Soh C,d 2TeT —t,eT —eT |.
6 8T 20 70T T(e—l)
..(1.24)
dK(t
For minimum value of K(tl), (1):0
3 4 4 2 5 4
= C 1+t—1+0L—t1+&—eT +h t1+t—1+%+%
T 1 T T 4T 4

2 3 5 6 4 b
+Y t_1+t_1+3(x—t1+3a‘—tl +C2 TeT—tleT =0. (125)
2 27T 10 10T

K
For minimum value of K(ty) o 0, which gives
1

C[1+t1 +atl +ath* —etl} +h{t1 +t+

2 3 2 3
H{tl L8 opth?  apt) }

aBt][-ﬂ-l + OLBtfH
B+1 B+1

2 2 2(B+2) 2(B+2)

+C, (Te" —t,e")=0. ...(1.26)
Case I11. If v =0, then holding cost will becomes constant. Total averages cost becomes
2 B+1 B+2 1
K(t))=—5—= cd t1+t—1+(ﬂ1 PR PL O
T (e-1) 2T B+1 T(B+2)
2 3 B+3 B+2
i hd t_1+t_1+ oft; N oft;
T?(e-1)| 2 3T T(B+1)(p+3) (B+1)(B+2)
b b
+ ;0 2TeT —t,eT —eT |. ...(1.27)
T(e-1)
K (1,)

=0

For minimum total averages cost,
1
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B+l t B+2 B+1
= C 1+t—1+atlﬁ+£ e’ |+h|t, I S
T T T T(B+l) (B+1)

4 b
+C, [TeT —tel ] =0. ...(1.28)
Sub case 1. When[3 =1, then deterioration rate will become constant.

2 2 3 b
K(tl):—COI ){t1+t—1+& (;_ TeT+T}

T?(e-1 2T 2
b4 ot oty
e 1) 3T 8T 6
2d
-,-( ) TeT_tleT_eT ...(1.29)
e—
For minimum value of K —
dt1
2 4 2 3 2
= C 1+t—1+oal+(x—t1—eT +h t1+t_1+°‘_tl+ﬂ
T T T 2T 2

t 4y
+C, [TeT —tel ] =0. ...(1.30)

Sub case 2. When 3 = 2, then deterioration rate will become a variable linear function of time.

2 3 4 4
K(tl): 2Cd t1+t—1+at at; CTeT 4T
T (e—l) 2T 3
12 t3 20ct5 oc'[i1
+_
e 1) 2 3T 15T 6
Zd T 2
tTe —eT ...(1.31)
T(e 1)
For minimum value of K —:
olt1
3 Yy 2 4 3
= C 1+t—+oct +— i L_eT |[+h|t t +20Ltl +_2at1
T T T 3T 3

t 4y
+C, [TeT —tel ] =0. ...(1.32)

Sub case 3. When[3 =3, then deterioration rate will become a quadratic function of time. Then total
average cost
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2 4 5 4
K(t1)=2C—d tl+i+oc—t1+m—tl—TeT +T
T (e—l) 2T 4 T
,hd |t 4 oty Soty
T?(e-1)[ 2 3T 8T 20
b b
+C—ZOI 2TeT —t,TeT —eT |. ...(1.33)
T(e-1)
N K (t,)
For minimum total average cost, =0,
4 4 2 5 4
= C 1+t—1+atf+&—eT +h t1+t—1+3a—tl+%
T T 4T 4
t t

+C,| TeT —teT [=0. ...(1.34)

CONCLUSION

In this chapter, we have endeavored to develop a two-warehouse inventory system with a very realistic
and practical deterioration rate. The effect of deterioration of physical goods in stock is very realistic
feature of inventory control. In this model deterioration rate at any item is assumed to follow two
parameter Weibull distribution function of time. This deterioration rate is suitable for items with and
without life-period. The two warehouse inventory problem is an intriguing yet practical topic of decision
science. The two-warehouse model can be applied to many practical situations, due to introduction of
open market policy; the business competition becomes very high to occupy maximum possible market.
As a result, the management of the departmental store is bounded to hire a separate warehouse on rental
basis at a distance place for storing of excess items. Complete backlogged shortages are permitted in this
study. Finally, the associated total cost minimization was illustrated by numerical exemplar and
sensitivity analysis was also carried out by using MATHEMATICA-8.0 for the feasibility and
applicability of the model. The results have also been interpreted graphically.
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